(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
Types:
f :: n__a:n__f:g → n__a:n__f:g
a :: n__a:n__f:g
g :: n__a:n__f:g → n__a:n__f:g
n__f :: n__a:n__f:g → n__a:n__f:g
n__a :: n__a:n__f:g
activate :: n__a:n__f:g → n__a:n__f:g
hole_n__a:n__f:g1_0 :: n__a:n__f:g
gen_n__a:n__f:g2_0 :: Nat → n__a:n__f:g
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
activateThey will be analysed ascendingly in the following order:
f < activate
(6) Obligation:
TRS:
Rules:
f(
f(
a)) →
f(
g(
n__f(
n__a)))
f(
X) →
n__f(
X)
a →
n__aactivate(
n__f(
X)) →
f(
activate(
X))
activate(
n__a) →
aactivate(
X) →
XTypes:
f :: n__a:n__f:g → n__a:n__f:g
a :: n__a:n__f:g
g :: n__a:n__f:g → n__a:n__f:g
n__f :: n__a:n__f:g → n__a:n__f:g
n__a :: n__a:n__f:g
activate :: n__a:n__f:g → n__a:n__f:g
hole_n__a:n__f:g1_0 :: n__a:n__f:g
gen_n__a:n__f:g2_0 :: Nat → n__a:n__f:g
Generator Equations:
gen_n__a:n__f:g2_0(0) ⇔ n__a
gen_n__a:n__f:g2_0(+(x, 1)) ⇔ n__f(gen_n__a:n__f:g2_0(x))
The following defined symbols remain to be analysed:
f, activate
They will be analysed ascendingly in the following order:
f < activate
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(8) Obligation:
TRS:
Rules:
f(
f(
a)) →
f(
g(
n__f(
n__a)))
f(
X) →
n__f(
X)
a →
n__aactivate(
n__f(
X)) →
f(
activate(
X))
activate(
n__a) →
aactivate(
X) →
XTypes:
f :: n__a:n__f:g → n__a:n__f:g
a :: n__a:n__f:g
g :: n__a:n__f:g → n__a:n__f:g
n__f :: n__a:n__f:g → n__a:n__f:g
n__a :: n__a:n__f:g
activate :: n__a:n__f:g → n__a:n__f:g
hole_n__a:n__f:g1_0 :: n__a:n__f:g
gen_n__a:n__f:g2_0 :: Nat → n__a:n__f:g
Generator Equations:
gen_n__a:n__f:g2_0(0) ⇔ n__a
gen_n__a:n__f:g2_0(+(x, 1)) ⇔ n__f(gen_n__a:n__f:g2_0(x))
The following defined symbols remain to be analysed:
activate
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
activate(
gen_n__a:n__f:g2_0(
n9_0)) →
gen_n__a:n__f:g2_0(
n9_0), rt ∈ Ω(1 + n9
0)
Induction Base:
activate(gen_n__a:n__f:g2_0(0)) →RΩ(1)
gen_n__a:n__f:g2_0(0)
Induction Step:
activate(gen_n__a:n__f:g2_0(+(n9_0, 1))) →RΩ(1)
f(activate(gen_n__a:n__f:g2_0(n9_0))) →IH
f(gen_n__a:n__f:g2_0(c10_0)) →RΩ(1)
n__f(gen_n__a:n__f:g2_0(n9_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
f(
a)) →
f(
g(
n__f(
n__a)))
f(
X) →
n__f(
X)
a →
n__aactivate(
n__f(
X)) →
f(
activate(
X))
activate(
n__a) →
aactivate(
X) →
XTypes:
f :: n__a:n__f:g → n__a:n__f:g
a :: n__a:n__f:g
g :: n__a:n__f:g → n__a:n__f:g
n__f :: n__a:n__f:g → n__a:n__f:g
n__a :: n__a:n__f:g
activate :: n__a:n__f:g → n__a:n__f:g
hole_n__a:n__f:g1_0 :: n__a:n__f:g
gen_n__a:n__f:g2_0 :: Nat → n__a:n__f:g
Lemmas:
activate(gen_n__a:n__f:g2_0(n9_0)) → gen_n__a:n__f:g2_0(n9_0), rt ∈ Ω(1 + n90)
Generator Equations:
gen_n__a:n__f:g2_0(0) ⇔ n__a
gen_n__a:n__f:g2_0(+(x, 1)) ⇔ n__f(gen_n__a:n__f:g2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_n__a:n__f:g2_0(n9_0)) → gen_n__a:n__f:g2_0(n9_0), rt ∈ Ω(1 + n90)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
f(
a)) →
f(
g(
n__f(
n__a)))
f(
X) →
n__f(
X)
a →
n__aactivate(
n__f(
X)) →
f(
activate(
X))
activate(
n__a) →
aactivate(
X) →
XTypes:
f :: n__a:n__f:g → n__a:n__f:g
a :: n__a:n__f:g
g :: n__a:n__f:g → n__a:n__f:g
n__f :: n__a:n__f:g → n__a:n__f:g
n__a :: n__a:n__f:g
activate :: n__a:n__f:g → n__a:n__f:g
hole_n__a:n__f:g1_0 :: n__a:n__f:g
gen_n__a:n__f:g2_0 :: Nat → n__a:n__f:g
Lemmas:
activate(gen_n__a:n__f:g2_0(n9_0)) → gen_n__a:n__f:g2_0(n9_0), rt ∈ Ω(1 + n90)
Generator Equations:
gen_n__a:n__f:g2_0(0) ⇔ n__a
gen_n__a:n__f:g2_0(+(x, 1)) ⇔ n__f(gen_n__a:n__f:g2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_n__a:n__f:g2_0(n9_0)) → gen_n__a:n__f:g2_0(n9_0), rt ∈ Ω(1 + n90)
(16) BOUNDS(n^1, INF)